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Abstract. We examine the effect of damping on the nonlinear modulation of an electromagnetic
plane wave in a ferrite. Depending on the value of the damping constant, the time evolution
of the amplitude of the wave is either a simple exponential decay, or is described either by a
nonlinear Schidinger (NLS) equation, or by a perturbed NLS equation. We give a new exact

solution to this latter equation, and a way to compute approximate solutions.

1. Introduction

The problem of wave propagation in ferromagnetic dielectrics has been studied by many
authors, mainly from a linear point of view [1]. The interest in this matter is especially
due to its applications to ferrite devices at microwave frequencies [2, 3], but the problem is
in fact highly nonlinear. The development of the method of multiscale expansions, and of
soliton theory, has lead to renewed interest.

The present author, in collaboration with Manna, published some time ago a study of the
nonlinear modulation of an electromagnetic monochromatic plane wave in such a medium
[4]. 1t was shown that it obeys the nonlinear Sitinger (NLS) equation. A detailed study
of the coefficients of this equation led to the characterization of focusing and defocusing
regimes for the wave [5]. This effect has also been observed experimentally [6-8].

In our previous works damping was neglected. Now we could like to take it into
account in the following way. Using the same model as in [4,5], we introduce into the
basic equations a phenomenological term that describes the damping. Then we apply the
same multiscale method, and see how the damping affects the modulation of the wave. This
way, we follow the example of Nakata. Dealing with the same model, he described in a
first paper [9] a mode of solitonic waves that can propagate in a ferromagnetic medium, and
showed that the time evolution of this mode is governed by the modified Korteweg—de Vries
(mKdV) equation. Later he published a second study giving the equation that describes the
effect of the damping on such a wave [10]. Notice that Nakata's work concerns solitary
waves, which may be considered as a limiting case of waves with a very small wave
number and frequency, whereas we are dealing here with a problem of wave modulation,
which is rather a question of fast oscillating waves. Nakata also obtained an asymptotic
model governed by the so-called derivative NLS equation [11]. Despite the equations
obtained being close together, they have totally different meanings. In Nakata’'s work, the
complex field represents the two-dimensional component of the magnetic field (or of the
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magnetization density) in the plane transverse to the propagation direction, whereas in our
case it is the complex amplitude of a fast oscillating wave.

The result obtained, in Nakata’'s paper as well as in the present one, depends strongly
on the order of magnitude of the damping constantin our case, ifo is small enough,
the NLS asymptotic describes the modulation, at the amplitude, space and time scales
under consideration. & is large, the damping term induces an exponential decay of the
amplitude of the wave that hides any nonlinear behaviour. Between these two extreme cases
there is an order of magnitude of for which the damping balances the nonlinearity. An
equation describing this case is derived: it is a perturbed NLS equation. This equation has
already been given in the same physical context [7,12], and also in nonlinear optics [13]
and hydrodynamics [14]. It has the following form:

2
i%—f—l—B%—l—CglglzziDg )
(g is here the complex amplitude of the wave). Such an equation has completely different
properties depending on whether the coefficients are real or not. If Bathd C have a
non-zero imaginary part, it is the Ginzburg—Landau (GL) equation that has explicit [15-17],
but also chaotic, solutions [18,19]. B andC are real, it is a perturbed NLS equation and
does not have any of the properties of the GL equation.

The derivation used in [12] is rather heuristic and fails in computing the coefficients.
Ouir first contribution in this paper is to compute them explicitly and prove that the equation
obtained is actually the NLS perturbed one, and not the GL equation.

Second, we discuss precisely which of the three mentioned behaviours are obtained,
depending on the order of magnitude of the damping constanthis is very important,
because it justifies the following experimental fact observed by De Gaspesds [6]:
above some threshold in the power input, the absorption falls. This is due to the fact that
the unperturbed NLS equation must replace the other models over some power threshold.

Third, we recall the known properties of the perturbed NLS equation and give a way
to compute one exact and several approximate solutions for it. This is done in the second
part of the paper.

The question of whether the inhomogeneous exchange term could be neglected or not
had to be analysed in this paper. The result is that this term does not modify the main
nonlinear behaviour of the wave, a fact which is proved in appendix A.

2. The model and the multiscale expansion

We use, as in [4, 5], a classical model based on the Maxwell equations, and on the equation
that governs the evolution of a magnetic moment in a magnetic field. This is the model
commonly used to study the behaviour of electromagnetic waves in ferrites [1, 3, 20], mainly
at microwave frequencies. In particular, it is used in the theory of ferromagnetic resonance
[2,21]. This model is macroscopic and neglects the effect of anisotropy, the inhomogeneous
exchange interaction, domain walls, and the finite size of the sample. A suitable choice
of material will allow us to neglect anisotropy. We assume that the sample is immersed
in a constant exterior fieldey, as is usual in ferromagnetic resonance experiments. The
field Hey should be strong enough to magnetize the sample to saturation. This allows us
to neglect the existence of domain walls and the effects of finite size of the sample.

Is the inhomogeneous exchange interaction to be taken into account?a Iprisri
negligible because we are considering here microwave frequencies, and not spin waves.
The inhomogeneous exchange term is important for the study of wave propagation in
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thin films [22], but the geometry of the present problem is totally different. However,
interaction with spin waves can occur and be responsible for nonlinear damping of the
microwave frequency. This effect has been theoretically studied by Suhl in the frame of
the ferromagnetic resonance [23]. Our model does not take into account these interactions
which can be avoided experimentally [6].

However, when we consider the effect of a weak damping term, the question of whether
the inhomogeneous exchange interaction term is still negligible can arise. We are able to
give here a precise answer: taking into account this term modifies the asymptotic model
only by a linear phase factor. This factor gives the first correction to the linear dispersion
relation due to the inhomogeneous exchange interaction. The coefficients of the nonlinear
equation are not modified at all. The justification of this fact is lengthy, but seems to us to
be useful: see appendix A.

If we assume a linear relationship = ¢ E between the electric field and the electric
induction D, the Maxwell equations reduce to

V(V-H)+ AH = 19
2 9r2
where H, M, andc = 1/,/uoé¢ are, the magnetic field, the magnetization density, and
the speed of light based on the dielectric consténtespectively. The evolution of the
magnetization density is governed by the following equation,

oM o

rral BMOM/\H+”M”M/\(M/\H) 3)
where$ is the gyromagnetic ratio angl a negative constant. Neglecting the second term
proportional too, we have the torque equation, describing the evolution of a magnetic
momentM in a magnetic fieldH. This equation, always valid at the microscopic scale,
is also valid at a macroscopic scale in a ferromagnet below the Curie point. We used it
in [4,5]. The term(c/|M|)M A (M A H) is a phenomenological term that describes
the damping: for a free systetw! tends to line up withH, instead of having a constant
precession motion around this vector. It was first proposed by Landau and Lifchitz [20],
and several forms have been given for it by various authors [3,24]. Notice that in regard
to the perturbative calculus of the present paper, all these forms are equivalent (especially,
equation (3) shows thatd/dr)|| M||> = 0 , and therefore the whole term/|| M| is a
simple constant).

The constant can be measured by means of the line width in a standard ferromagnetic

resonance absorption experiment. We have [3 (p 73), 24, 25]

AH
lo| = MO(STH@ 4)

where Hy is the resonance exterior field amdH the linewidth of the resonance curve.
Many experimental data can be found in published studies. The dimensionless parameter
o

08 ®)

always has a low value that allows us to treat the damping term as a perturbation. In fact,
o is not a constant, and depends on the frequenayf the wave, but the effects of this
dependency are of higher order and we can neglect it.
After rescalingM, H, t into §uoM /c, suoH /c, ct, equations (2) and (3) become
82
—V(V-H)+AH:ﬁ(H+M) (6)

(H + M) (2

o =
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oM G
= _MAH+—— MAMAH) ()
ot M|
wherego is related to the constamt by equation (5).
We expand the field#f, M in a Fourier series

H=) H"é" (8)
nez

M=) M"é" (9)
nez

where the phase is defined byp = kx — wr, x being the spatial coordinate along the
propagation direction. We have the reality conditiBft” = H"*, M ™" = M"™*, wherex
denotes complex conjugation. We assume that the amplitt®fes\VI" vary slowly in time

and space, and neglect their transverse variation. Thus we introduce a small patcameter
and three slow variables:

& =c¢x
T =et (10)
T =g’

We expand the amplitudeH™, M" in a power series of:

o0

Hn = ZEJHjn (11)
j=0

M =Y e, 12
j=0

H} and M} are functions of¢ and . HY and M{ are assumed to be constant and
represent the exterior field where the sample is immersed, and the magnetization density at
saturation, lined up with the field. Notice thH8 is not the exterior fieldHy; itself, but

the field created byHy inside the medium. It depends dHcy through demagnetizing
factors. Because we do not want to fix the shape of the sample, assumed to be infinite
in our model, we do not write down these demagnetizing factors, and considedfly
which we will call the external field, despite the fact that it differs frdifiay:.

H} and M represent the slowly-varying complex amplitude of the monochromatic
plane wave under consideration. All other terms (except the conjugates of the latter) of
order O or 1 are set to zero, and we assume that the higher-order terms vanish-as-co.

This is the usual multiscale expansion that ordinarily leads to the NLS equation [26].

Considering the damping term as a perturbation, we will assume (as in [10]§ that
satisfies

& =elé (13)

where p is some positive integer, antl a quantity of order 1. Then we put expansions

(8)—(12) into the basic equations (6) and (7) and collect the terms order by order in
The result will depend on the order of magnitude of the damping coeffigierthat is,

of the integerp. At ordere®, we obtain, whatever the value pf

Hy=am (14)
Mo =m (15)
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m = (%) (16)

m iS a constant vector and a real constant.
At order &1, we obtain the dispersion relation

where

w2m? + ypu(l+ aym? = y2w? 17
where
k2
y=1-— (29)
w
and
Mi=migE, T, 1) (20)
—iy um,
mi = ( iy s ) (21)
2w
H} =hig(§, T, 1) (22)
iy wm;
h}= (—i,umx ) (23)
yw

At order £2, the third harmonics and those following are zero; the second harmonics
are non-zero and uniquely determined. To avoid unhelpful length in this article, we shall
not record these values here which, as with other details of this calculus, are the same as
those in casé& = 0, so can be omitted without inconvenience for the clarity of this paper.
The reader interested in these details should see [4,5]. In the case avieief ordere
(p = 1), the solvability condition for the fundamental term leads to the following equation:

g g

g
L4y 4 2=, 24
or Ve T 1 (24)

V is the group velocity of the wave,
b+ Du

— 25
b+ 1+ ypu? (25)
with
w
_¢ 26
u=" (26)
and
2,2
pems
b= 22 (27)
The constanf; has the following expression:
21-y)a b+1 2
o= ™ A-y)A+a)®+1+ypu’) (28)

-6 yo?2pu— (1+b)(1-y)]
The solution of equation (24) is
gE T, 0)=q¢ - VT, ne’'m (29)
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Thus the dominant time evolution gfis an exponential decay. The calculus can be pursued
in order to find ther-dependency ofy (or g). We solve the equations in an analogous
way to that in [4], with additional technical complications. We obtain an equation of the
form

m%f+3§3+E%7+Fq+cmmezmh+m¢emﬁ+1i 0 (30)
A, B, C, E, F, I, A are constants. We have made the change of
variables
x=&E-VT
t=T (31)
T=T.
r = r(x,t,7) and ¢ = ¢(x,7) are additional degrees of freedom that

take place in the expressions for the quantitigd} and HY, respectively.
Let

aq 82 aq
K = A— B— E— F 32
oy TBa T E +Fa (32)
and
0 = (Cqlql* + rp)q. (33)

K and Q do not depend on, thus
—-K T;
r(x,t,t) = Tt—}—%eZ‘/T"—{—ro()c,r) (34)

ro being an arbitrary function of, r only. HZ, and thus-, must be bounded as— +oc.
Thus we have necessarily

K=0=0. (35)
In particular, we find that

aq 8%q aq
|A8 +B82+E8x+Fq_o‘ (36)
A and B have the same expression as in the NLS equations of [4,5],Fanél are real
constants, given by the formulae listed in appendix B.
The solutions of equation (36) have the form
.l_F—mz El
q(x, 1) —c]oexp|:| x+1 1 T 1 1::|
where gg is an arbitrary complex number, ardreal. We obtain corrections to the time
evolution of the wave, for the oscillatory part as well as for the exponential decay, but these
corrections are still linear.

It is clear, from this calculus, that the presence of an exponential decay in the transport
equation (24) kills any nonlinear effect, even at a higher order. The main interest of
equation (36) lies in this last remark, even if we are not quite sure of the physical relevance
of the correcting terms in (37).

In the case wherg > 1, the term(1/Tp)g in equation (24) is of higher order, and

g(s’ Tv T) = g(éj - VT’ T)‘ (38)

(37)
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We find exactly the NLS frame again. The computation of terms of at8dor n = 0 is
described in [4,5]. The equation describing thevolution ofg is the solvability condition
for the fundamental harmonic = 1 at orders3. For p = 2, we obtain

. 9 d
mAdﬁ—aM@—mW@:V?ﬂﬁ——Wﬁ
——X:MQAEQ+A@AIQ%+——mAAﬂ. (39)

r+s=1
M} can be expressed as a functionidt as in caseés = 0, so hence we get
LH} =V 4+ v)° (40)
where
iw 0 um;
L= ( 0 iy —me>. (41)
—A+a)m; pm, iyo
Vsl’0 is the right-hand side of the analogue equation obtained in &as&, and

Ia)a

V3® = —m A M} (42)
m
The solvability condition for equation (40) is obtained by applying the linear form
x iw 0 «x
(y > — del( 0 iyo 'y ) (43)
z -A+o)ym; pm, z

to the right-hand side and setting the result equal to zero.
One obtains the following result

2

dg 3%g
|A— B— C iDg = 0. 44
9 T 352'+ glgl* +iDg (44)

This is the nonlinear Schdinger (NLS) equation
ma+f2+cuz
a7 9E2 818

already obtained in [4,5], perturbed by the added tebrg.i The real constantd, B, C
have the same (complicated) expression as found in [4, 5], and

A

o
[):;;y%ﬁpum§+(u+(l+ah0mﬂ. (45)
We verify that
D 1
Z_ - 46
A- T (46)

where Ty has expression (28).
If p>2,ie.ifé e o(e?), the term Dg in equation (44) disappears and the evolution
of the modulation is governed by the NLS equation

2

ag 0°g
iA%8 1 BYS | Calgl? 47
5 T 352+ glgl® = (47)
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3. Examples of values ofr

The model we are dealing with has mainly been used for the description of the propagation
of microwaves in ferrites. Experimental data about such materials can be found in various
manuals [25, 27, 28]. Altough they are not up to date, we will restrict ourselves to the data
given by these books. Values 6f are computed from them using formulae (4) and (5).
They vary from just less than 16 to nearly 10,

The order of magnitude of depends on the material, but we have to compare it with
the small parameter, which seems to be arbitrary. In the present framegpresents both
the ratio||sH11||/||H8|| of the amplitude of the wave field to the exterior field, and the ratio
&/(x — Vi), the inverse of the ratio of the typical length of the amplitude variation to the
one of the phase variation (the wavelength). These two quantities are assumed to have the
same order of magnitude, depending on the experimental conditions.

If & is not very small, as an example for a polycrystalline ferdte~ 107! (for
example, NijgZngoFe04, sphere of diameter 0.75 mm, frequency 9400 Mz~ 0.08
([25], p 323)),e cannot be larger than 1b, thusé is of ordere, or larger. Exponential
decay and linear behaviour is thus observed, in every case where this theory is applicable.

Now consider a relatively small value &, for examplesd ~ 1072 (for example,
monocrystalline spinel ferrite, MngFeLgsO4, Sphere of diameter 0.25 mm, frequency
9300 MHz: & ~ 0.0067, 0.0076, 0.010 on each of the three cristallographic axes ([25],
p 186)). If we choose ~ 1072, that is, if we choose a wave intensity of the order of
magnitude of a hundredth of the exterior field, and look for the variations of the amplitude
in wave packets of some hundreds of wavelengihbas the same order of magnitude as
e. Thus we will observe exponential decay and linear behaviour. For larger wave intensity
and shorter pulses, asapproaches 1G (the robustness of the NLS model allows us to
think that such a value of will not be too large, and that the perturbative calculus will still
be valid) we will haves of ordere?, and thus the amplitude modulation will be described
by the perturbed NLS equation (44).

For very small values of, ¢ ~ 10~* (for yttrium garnet ferrites, Lecrawt al found
the valueAH ~ 0.6 Oe [29], which leads t& ~ 8 x 107°. This was the lowest value
known at this time), the exponential decay and linear behaviour is observed for very small
values ofe, ¢ ~ 1074, For slightly larger valuess ~ 1072, the modulation is described
by the perturbed NLS equation (44), and for high intensities and short pulsess juigt
less than 10%, 6 becomes of ordes®, and is thus negligible, and the modulation obeys the
NLS equation (47).

Recent experimental works have measured microwave envelope solitons [6, 7] or dark
solitons [8] in yttrium iron garnet films. Although our theory does not, strictly speaking,
apply to thin films, because we assumed that the media were inifinite, these experimental
results are very close to our theoretical conclusions. The two regimes allowing solitons
or dark-solitons that correspond to the Benjamin—Feir instability studied in [5] have been
observed.

De Gasperiet al [6] measured a threshold power inpRy, above which the attenuation
falls. They showed thaPy, is proportional to the inverse squared pulse Iengrt}f.lThis
corresponds to the NLS mode}; has the same order of magnitude as the slow varigbles
andT, that is Ye, while the powerP of the wave is proportional to the square of the field
described by the ternﬂl1 in our expansion, and is thus of orde. Therefore, regarding
the e-dependencyP is proportional to 1:5 when the formation of a soliton first occurs.

A remarkable feature is that the absorption of the soliton is practically negligible, which is
not the case for the solutions of the perturbed NLS equation (44) [30]. This is explained
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by our theory: the perturbed NLS equation (44) describes the behaviour of the wave only
when the nonlinearity and dispersion exactly balances the damping. If damping dominates,
which happens for a power input below some threshold (and the suited pulse length), the
exponential decay kills the nonlinear effects. On the other hand, if the power input is large

enough (and the pulse length accordingly small), so that nonlineary and dispersion dominate
the damping, the modulation of the wave is governed by an unperturbed NLS equation. This
justifies the power output increase observed by De Gasptek

4. The relaxation time

The relaxation timely defined by (28) is also given by the following expression:
m 2[(u?m?/u?) + 1+ ay?)y?e’]
-6 y2?[y?? + u2(m? + m?)]
Becauses is a negative constant, we see that, as was expected, this quantity is always
positive. For high frequenciedp has the following limit:
4 1
w00 —6m (14 c0F6)

To =

(48)

To (49)

We have put

m, = m C0SH
. (50)
m; = m Sing.
0 is thus the angle between the propagation direction and the exterior field. For high
frequenciesyy varies between 245 |m and 4/|6|m, depending om: its order of magnitude
does not change much.
The corresponding decay length is given by

m 21+a)(b+1)

Xo=VTo= —
0= Vo= 2 — (- )b+ D

(51)
or

m 21+a)  ulm?+ y2w?
-6 yolu 2um?— 1—y)m?

0=

(52)

5. The perturbed NLS equation

Equation (44) describes the evolution of the envelope of a short pulse in a dispersive, weakly
nonlinear medium, with weak damping. As we wrote in the introduction, it has already
been derived in the same physical context [7,12], but not in such a rigorous way as we
have done here. It has also been obtained in other situations, as in nonlinear optics [13]
or hydrodynamics [14]. We shall in this section summarize the known properties of this
equation, and give a new exact solution for it.

Whatever the real non-zero values of the constant8, C, D, equation (44) is not
integrable. ForD = 0 it reduces to the integrable nonlinear Sitinger (NLS) equation.
It looks like the complex Ginzburg—Landau (CGL) [15-18] equation, which has the same
form, but with B, C complex. Setting to zero the imaginary part of these parameters
modifies totally the properties of the equation. Some particular case of the CGL equation,
namely the case where the raty C is real, is called the real Ginzburg—Landau equation.
It has many properties in common with the so-called complex case. It is very important for
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our purpose not to mix up equation (44) with the real Ginzburg—Landau equation. Indeed,
equation (44) is not a particular case of the CGL equation. It appears clearly when one
considers the expressions of the exact solutions of CGL given in [15-17]. Divisions by the
imaginary part ofB and C occur in many places in these formulae. With the notation of
these papers; = p = p, +ip;, andC = g = g, +ig;, and the expressions are not defined
asp; or g; are zero.

If, despite this observation, we try to retrieve in equation (44) the particular solutions
of the CGL equations given by Nozaki and Bekki [15], we find a bilinear form, analogous
to that of NLS [31]:

[-A+iAD, + BDZ]G - F =0

B iD— (53)
D+~ " |F-F=|GP
[C it —¢ } G|
D% is the operator defined by Hirota as [31]
n a 8 ! /
Dyf-g= (8 - 8’) S(X)g(X) | x=x'- (54)
X X

The functionsF andG are such thaf is real andg = G/F, anda is an arbitrary complex
constant. But any attempt to find an explicit solution for equation (44) generalizing one of
the solutions of Nozaki and Bekki gives the constrdint= 0 as a solvability condition.

Karpman and Maslov [30] developed a perturbative method to find approximate
solutions of this equation, wheh is small. This method is based on the inverse scattering
transform (IST) method for the resolution of the NLS equation. Thus it works only when
this equation admits solitons, i.e. wh&T > 0 (the sign of theBC product, in our special
case, as a function of the physical parameters of the system, has been discussed in great
detail in [5]). The quoted authors work with the rescaled equation:

iur/ + %uégf + M|M|2 = |,01/l (55)

(the subscript denotes partial differentiation). Equation (55) can be obtained from (44)
through the transformation

¢ =at
T =nt1 n==1 (56)
u =bg
with
n = SgnAB
_ A
“Vl28
(57)
C
=[5
A
p=""
To’
To first order in the perturbation theory, the solution is
1 p(4z” +7%/3)7 |
=2 1 g G+noz/v) 58
= cosh [ 16iv2 (58)
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with
7= 2v(&" —2uot’ — &) (59)
v = e?” (60)
2
5= %[e“m’ — 1]+ 2ut’ + 2u0k0 + So. (61)

o, Vo, 80, &o are arbitrary constants.

Neglecting the term proportional tp in the parenthesis in expression (58), we have
the so-called adiabatic approximation: a solitonic-shaped solitary wave, where amplitude
v = 1€’ is exponentially decreasing with time (0 < 0 if n = +1, andp > O if
n = —1), while its width Yv is exponentially increasing (with time).

The correction ternp (4z2 + w2/3)/16iv? is proportional to

pnz e‘4"’/

48ivg
whent is large ¢ > 0), and thus increases very rapidly. The perturbation calculus is
therefore valid only for smalt’,

IT'| < i (62)
o]
This restriction is not surprising: once we return to the laboratory frame, the rescaled
value of p and is proportional t@, thus is of orders2. Therefore, condition (62) means
that solution (58) is valid only for times of order 72, but the scaling (10) defines
(= £1') = £%, which means precisely that we restrict ourselves to values of thertime
of ordere~2. This upper limit fors has in fact a sufficiently large value.

Numerical studies of the solution have also been performed, in relation to the
applications to nonlinear optics. [32] presents such a calculation, and compares its results to
those of the previous perturbative calculus. The authors retrieve the validity condition (62)
of the perturbative calculus. For larger values of timgeplaced by the spatial parameter
z in their study), the behaviour of the numerical solution is found to be identical to that of
the linear solution. An analogous feature can be found in the frame of our present work by
the following method. Let us call= 1/¢? the time scale. Then, considering values of the
time variabler greater than Jp is equivalent to assuming that the damping constahas
an order of magnitude greater theh We have seen that, in this latter case, the behaviour
of the wave was linear. Authors of [32] have made the same observation, although their
reasoning concerns equation (44), and not on the basic set.

In addition to these already known properties of equation (44), we will describe a
method that gives an exact particular solution of the equation, and a way to compute
various approximate solutions. Let

p= g qg= % r = % (63)
Equation (44) reads
ige + pgee +qglgl’ +irg =0. (64)
We put
gE, t1)=hE e’ (65)

Then the equation verified by functidnis
ih, 4+ phee = —qhlh|?e ™2™, (66)
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When is large in regard tdp = 1/r, the right-hand side of equation (66) can be treated
as a perturbation. Although we just write thahormally has the same order of magnitude
as Ty, the exponential @ decreases very rapidly, and will be negligible for values of
not too far from7y. Let us expand: in a power series of the quantity &7 :

+oo
h=Y h"e?r. (67)
n=0
Each functionz™ should verify
i(h™ — 20rh™) + phy) = &® (68)
M — —q Z JAGUACHNCOLS (69)
ni+ny+nz+l=n
n1.np,n3>0

For eachn, ®™ is defined by the knowledge df’, 0 < r < n — 1, and thus
equations (68) and (69) constitute a recurrence relation for the coeffidiéhtsf series

(67).
Forn =0, we get
ih® + phld = 0. (70)
Let us first choose the particular solution
hO — g dKé—pK?T) (71)

where A € C, K e R are arbitrary constants. Starting with this solution &P, we will
construct an explicit exact solution of equation (66), using the following method.

First, we show by induction that a solution of the system formed by equations (68) and
(69) for eachn is such that, for each > 1,

K — )\nh(o) (72)
where,, is a constant.

Then, we show, always by induction, thiat = u,A%, with x; = (—ig/2r)|.Al?, andu,
is a sequence of real constants defined by

ug =

(73)

Uy, =

S| B

Z (_1)nunlunzun3-

ni+no+nz+1=n
Expanding & = e* - e - e X, we show that,, = 1/n! for eachn. It is then easy to sum
up the series. Finally we have
g=Aexp[i(K§—pKzr)—rr—|26‘]|A|2e2”]. (74)
r
Starting with
h® = AVt 4+ Ay €V (75)
A, A eC v = K;E — pKit j=12

we obtain a ‘two-modes’ solution, that cannot be exactly computed, but for which we can
give asymptotic expansion for large valuestof We report expression (75) &f® in the
equation forn®:

i(h® —2rh®) + phl = —gh @@ 2. (76)
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We expand the right-hand side and seek for an analogous expressigt for
After a short computation, we get the following approximate solution of (44),

g =T [A €Y 4 A&z 4 e (W VeV 4 AP V2 APV

APz 4 o] (77)
with:

MY = S AP + 24P (78)
M = S Al AP + 2040 (79)

@1 q A} A3
= — 80
L7 2(ir + p(K1 — K2)?) (80)
12 _ quAi (81)

LT 20r + p(K1— K20
6. Conclusion

We have discussed the effect of the damping on the nonlinear modulation of a
monochromatic wave in a ferromagnet. Its behaviour depends on the magnitude of the
damping constant. If this constant is small enough, in relation to the intensity of the
wave, the evolution of the modulation is governed by the NLS equation, and the formation
of solitons cancels the effects of the damping. If the damping constant is larger, the wave
decreases exponentially, and no nonlinear modulation is observed. The multiscale expansion
has been pursued to the following order: the evolution equation is still linear.

It is also possible that damping exactly balances the nonlinearity and dispersion; in this
case the evolution of the modulation is described by a perturbed NLS equation. We have
summarized the known properties of this equation and given a new exact solution for it,
and a method to compute approximate particular solutions.

Some questions about the physical relevance of the present model have been pointed
out; in particular, we have shown that the inhomogeneous exchange interaction does not
modify the nonlinear behaviour of the wave. We have also commented on our conclusions
in relation to standard numerical data, and re-interpreted the experiment of De Gas$peris
al.

Appendix A

In this appendix, we show that, in the frame where we derived the perturbed NLS equation
(44), a small inhomogeneous exchange interaction term has no effect on the modulation
of the monochromatic wave, but introduces only a linear phase modulation. The precise
expressions for the coefficients of this modulation are very complicated and not essential,
and thus in order to avoid humerous pages of formulae we shall omit them, as well as many
technical details of the calculus.
The inhomogeneous exchange interaction can be described [12], in the frame of the

present model, by replacing equation (3) by

oM o

= SpoM A Hes + ”M”M/\ (M A H) (82)
where the fieldH is replaced by the effective field:
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p is some real constant. As previously given, we rescale the equations, and then use the
expansion defined by equations (8)—(12). We assuméthatp are small, in the following
sense,

6 =¢ and o =c¢p (84)

wherep, 6 are quantities of order zero. Physically, it would mean that the coeffisigat
very small in relation tqy, which is not the case in general, but we intend here to prove, in
a mathematical way, that the influence of the inhomogeneous exchange interaction on the
nonlinear behaviour is negligible, even when the coefficieig not so small. That is why
we assume such an order of magnitude dor

The terms at ordet® are the same as previously given by equations (14)—(16). At
ordere!, we also find the solution given by equations (17)—(23). Because we have assumed
that p is small, of ordere, the inhomogeneous exchange interaction does not modify the
dispersion relation (this means that we are not considering spin waves). Ats3dee
obtain an equation analogous, in some sense, to equation (24):

g g . _
ar Ve iQg = 0. (85)
The real coefficient2 reads
. 2u— (1+b)1—yp)]
Q- pz el . 86
P 20— ) A+ )b+ 1+ yuu?) (86)
Thus
gE. T.1)=hE - VT, 1), (87)

Because of the factor i in equation (85), the exponential phase factor will not kill the
nonlinear effects as did the exponential decaying factor in equation (29). For this reason,
we will obtain a nonlinear evolution equation withas large as order, while such a result
necessitates as small as ordes?.

The next step of the calculus reads as in the case where we neglected the inhomogeneous
exchange term. The expressions obtainedHgy; M7 are the same as in [4,5]. The terms
Hj and M} contain a term proportional tg, which we will not write here. At ordeg?,
we have to write a solvability condition. A term proportionald@ppears in equation (82);
this is the coefficient o£3€“ in the expansion of

oM A (AM). (88)
After use of equation (87), we obtain the equation
iAh, + Ph +iRhg 4+ Bhg; +iDh + Ch|h|? = 0. (89)

The important fact is that the coefficients B, C, D have the same value as in the case
wherep = 0. The coefficients® and R have complicated expressions, which we shall omit,
with P proportional top? and R porportional top. Let

hE—VT, 1) = jE — VT, 7)d@E-VD+n (90)
with
—R
“~ 28 (92)
and

1
b= K[—azB —aR + P]. (92)



Electromagnetic waves in ferrites 4637
Then equation (89) reduces to
iAje + Bjec + CjljI* +1Dj = 0 (93)

which is identical to equation (44). Thus the only effect of the inhomogeneous exchange
term is the linear phase factor

expi(QT +a(E —VT) + br)

which gives account of the modification of the linear dispersion relation by the
inhomogeneous exchange interaction. However, the nonlinear behaviour of the modulation
is not affected.

Appendix B

In this appendix we give the lengthy formulae that permit us to compute the coeffidgients
and F in equation (36). First, we compute the second-order terms:

Hj = hi+hy g +hyg (94)

M = mi+my g +myg. (95)
The functionr that intervenes in equation (30) is such that

fE T, 1)=r—-VT,T,v)e /D, (96)

1¢ 1¢ lo lo i
m;”, h;”, my;?, hy;° are constant vectors given by

Lo 1 —m;(b+ 1+ 2ay)
myt = (V- u)( my(b+1+2ay) ) (97)
2iyw
1 my(b+ 1+ 2ay)
hyt = SV —u)( (m./y)(1 - b) ) (98)
0
(=mi/o)[(y/To)[2a(1 - y) — u] — (Y?w?G /m)]
my° = ( (my/o)[(y/ToRa(1 - y) — u] = (y?0®5 /m)] ) (99)
2iy(1—y)/To
(m;/)[(y/To)Ra(l - y) — u] — (y?w?5 /m)]
hy7 = <(mx/7/w)[(1/To)[2(1 —y) +yul + (y2?s /m)] ) (100)
0

Then we write the solubility condition for the system (6) and (7) at orgfefor the
fundamental frequency. Thus leads to equation (30), after we have reptacesihg
equation (29). The coefficients read

E=DV;® + Diuy? (101)
F=DV,"? + D,U;©. (102)

The linear formsD andD; are given by
D= (y@A+a)ym;, —pum,,iyw) (103)
w . .
Dy = ﬁ(lyum,, —iumy, —yw). (104)
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Uy @, 03P, v ©, v @ are vector coefficients of the linear system whose compatibility
condition is equation (30). They read

Ul(O)x _ 7(}11” ) (105)
1-—
1,(0),s l(rs la.s Y 1s
U, = (h mz%%) + w2Ty hy fors=y,z (106)
2|
U:;L(l)’x _“4 ( (hléx 1Ex) + V(hlax m;.,a,x)> (107)
w

2i ‘ ‘
uy®s == —(h;’“ +my*Y) + V(T + mbo)
w TO

2V(L—y) 1y, 2ik, 1,
TTohi —hl" fors=y,z (108)
1
V:c,l’(o) _ 7m%,a + gm Alm A (h;,a _ otmz ) (109)
To m
1
Val,(l) _ Tng + Vm + %m Alm A (h;‘ — amzé)] (110)
0

These quantities can be computed explicitly using equations (97)—(100); then the result can
be found from equations (101) and (102). This gives the coefficiErand F .
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