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Abstract. We examine the effect of damping on the nonlinear modulation of an electromagnetic
plane wave in a ferrite. Depending on the value of the damping constant, the time evolution
of the amplitude of the wave is either a simple exponential decay, or is described either by a
nonlinear Schr̈odinger (NLS) equation, or by a perturbed NLS equation. We give a new exact
solution to this latter equation, and a way to compute approximate solutions.

1. Introduction

The problem of wave propagation in ferromagnetic dielectrics has been studied by many
authors, mainly from a linear point of view [1]. The interest in this matter is especially
due to its applications to ferrite devices at microwave frequencies [2, 3], but the problem is
in fact highly nonlinear. The development of the method of multiscale expansions, and of
soliton theory, has lead to renewed interest.

The present author, in collaboration with Manna, published some time ago a study of the
nonlinear modulation of an electromagnetic monochromatic plane wave in such a medium
[4]. It was shown that it obeys the nonlinear Schrödinger (NLS) equation. A detailed study
of the coefficients of this equation led to the characterization of focusing and defocusing
regimes for the wave [5]. This effect has also been observed experimentally [6–8].

In our previous works damping was neglected. Now we could like to take it into
account in the following way. Using the same model as in [4, 5], we introduce into the
basic equations a phenomenological term that describes the damping. Then we apply the
same multiscale method, and see how the damping affects the modulation of the wave. This
way, we follow the example of Nakata. Dealing with the same model, he described in a
first paper [9] a mode of solitonic waves that can propagate in a ferromagnetic medium, and
showed that the time evolution of this mode is governed by the modified Korteweg–de Vries
(mKdV) equation. Later he published a second study giving the equation that describes the
effect of the damping on such a wave [10]. Notice that Nakata’s work concerns solitary
waves, which may be considered as a limiting case of waves with a very small wave
number and frequency, whereas we are dealing here with a problem of wave modulation,
which is rather a question of fast oscillating waves. Nakata also obtained an asymptotic
model governed by the so-called derivative NLS equation [11]. Despite the equations
obtained being close together, they have totally different meanings. In Nakata’s work, the
complex field represents the two-dimensional component of the magnetic field (or of the
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4624 H Leblond

magnetization density) in the plane transverse to the propagation direction, whereas in our
case it is the complex amplitude of a fast oscillating wave.

The result obtained, in Nakata’s paper as well as in the present one, depends strongly
on the order of magnitude of the damping constantσ . In our case, ifσ is small enough,
the NLS asymptotic describes the modulation, at the amplitude, space and time scales
under consideration. Ifσ is large, the damping term induces an exponential decay of the
amplitude of the wave that hides any nonlinear behaviour. Between these two extreme cases
there is an order of magnitude ofσ for which the damping balances the nonlinearity. An
equation describing this case is derived: it is a perturbed NLS equation. This equation has
already been given in the same physical context [7, 12], and also in nonlinear optics [13]
and hydrodynamics [14]. It has the following form:

i
∂g

∂t
+ B

∂2g

∂x2
+ Cg|g|2 = iDg (1)

(g is here the complex amplitude of the wave). Such an equation has completely different
properties depending on whether the coefficients are real or not. If bothB andC have a
non-zero imaginary part, it is the Ginzburg–Landau (GL) equation that has explicit [15–17],
but also chaotic, solutions [18, 19]. IfB andC are real, it is a perturbed NLS equation and
does not have any of the properties of the GL equation.

The derivation used in [12] is rather heuristic and fails in computing the coefficients.
Our first contribution in this paper is to compute them explicitly and prove that the equation
obtained is actually the NLS perturbed one, and not the GL equation.

Second, we discuss precisely which of the three mentioned behaviours are obtained,
depending on the order of magnitude of the damping constantσ . This is very important,
because it justifies the following experimental fact observed by De Gasperiset al [6]:
above some threshold in the power input, the absorption falls. This is due to the fact that
the unperturbed NLS equation must replace the other models over some power threshold.

Third, we recall the known properties of the perturbed NLS equation and give a way
to compute one exact and several approximate solutions for it. This is done in the second
part of the paper.

The question of whether the inhomogeneous exchange term could be neglected or not
had to be analysed in this paper. The result is that this term does not modify the main
nonlinear behaviour of the wave, a fact which is proved in appendix A.

2. The model and the multiscale expansion

We use, as in [4, 5], a classical model based on the Maxwell equations, and on the equation
that governs the evolution of a magnetic moment in a magnetic field. This is the model
commonly used to study the behaviour of electromagnetic waves in ferrites [1, 3, 20], mainly
at microwave frequencies. In particular, it is used in the theory of ferromagnetic resonance
[2, 21]. This model is macroscopic and neglects the effect of anisotropy, the inhomogeneous
exchange interaction, domain walls, and the finite size of the sample. A suitable choice
of material will allow us to neglect anisotropy. We assume that the sample is immersed
in a constant exterior fieldHext, as is usual in ferromagnetic resonance experiments. The
field Hext should be strong enough to magnetize the sample to saturation. This allows us
to neglect the existence of domain walls and the effects of finite size of the sample.

Is the inhomogeneous exchange interaction to be taken into account? It isa priori
negligible because we are considering here microwave frequencies, and not spin waves.
The inhomogeneous exchange term is important for the study of wave propagation in
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thin films [22], but the geometry of the present problem is totally different. However,
interaction with spin waves can occur and be responsible for nonlinear damping of the
microwave frequency. This effect has been theoretically studied by Suhl in the frame of
the ferromagnetic resonance [23]. Our model does not take into account these interactions
which can be avoided experimentally [6].

However, when we consider the effect of a weak damping term, the question of whether
the inhomogeneous exchange interaction term is still negligible can arise. We are able to
give here a precise answer: taking into account this term modifies the asymptotic model
only by a linear phase factor. This factor gives the first correction to the linear dispersion
relation due to the inhomogeneous exchange interaction. The coefficients of the nonlinear
equation are not modified at all. The justification of this fact is lengthy, but seems to us to
be useful: see appendix A.

If we assume a linear relationshipD = ε̃E between the electric fieldE and the electric
inductionD, the Maxwell equations reduce to

−∇(∇ · H)+1H = 1

c2

∂2

∂t2
(H + M ) (2)

whereH, M , and c = 1/
√
µ0ε̃ are, the magnetic field, the magnetization density, and

the speed of light based on the dielectric constantε̃, respectively. The evolution of the
magnetization densityM is governed by the following equation,

∂M

∂t
= −δµ0M ∧ H + σ

‖M‖M ∧ (M ∧ H) (3)

whereδ is the gyromagnetic ratio andσ a negative constant. Neglecting the second term
proportional toσ , we have the torque equation, describing the evolution of a magnetic
momentM in a magnetic fieldH. This equation, always valid at the microscopic scale,
is also valid at a macroscopic scale in a ferromagnet below the Curie point. We used it
in [4, 5]. The term(σ/‖M‖)M ∧ (M ∧ H) is a phenomenological term that describes
the damping: for a free systemM tends to line up withH, instead of having a constant
precession motion around this vector. It was first proposed by Landau and Lifchitz [20],
and several forms have been given for it by various authors [3, 24]. Notice that in regard
to the perturbative calculus of the present paper, all these forms are equivalent (especially,
equation (3) shows that(∂/∂t)‖M‖2 = 0 , and therefore the whole termσ/‖M‖ is a
simple constant).

The constantσ can be measured by means of the line width in a standard ferromagnetic
resonance absorption experiment. We have [3 (p 73), 24, 25]

|σ | = µ0δ
1H

2H0
(4)

whereH0 is the resonance exterior field and1H the linewidth of the resonance curve.
Many experimental data can be found in published studies. The dimensionless parameter

σ̃ = σ

µ0δ
(5)

always has a low value that allows us to treat the damping term as a perturbation. In fact,
σ is not a constant, and depends on the frequencyω of the wave, but the effects of this
dependency are of higher order and we can neglect it.

After rescalingM , H, t into δµ0M/c, δµ0H/c, ct , equations (2) and (3) become

−∇(∇ · H)+1H = ∂2

∂t2
(H + M ) (6)
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∂M

∂t
= −M ∧ H + σ̃

‖M‖M ∧ (M ∧ H) (7)

whereσ̃ is related to the constantσ by equation (5).
We expand the fieldsH, M in a Fourier series

H =
∑
n∈Z

Hneinϕ (8)

M =
∑
n∈Z

Mneinϕ (9)

where the phaseϕ is defined byϕ = kx − ωt , x being the spatial coordinate along the
propagation direction. We have the reality conditionH−n = Hn∗, M−n = M n∗, where∗
denotes complex conjugation. We assume that the amplitudesHn, Mn vary slowly in time
and space, and neglect their transverse variation. Thus we introduce a small parameterε,
and three slow variables:

ξ = εx

T = εt

τ = ε2t.

(10)

We expand the amplitudesHn, Mn in a power series ofε:

Hn =
∞∑
j=0

εjHn
j (11)

M n =
∞∑
j=0

εjMn
j . (12)

Hn
j and Mn

j are functions ofξ and τ . H0
0 and M0

0 are assumed to be constant and
represent the exterior field where the sample is immersed, and the magnetization density at
saturation, lined up with the field. Notice thatH0

0 is not the exterior fieldHext itself, but
the field created byHext inside the medium. It depends onHext through demagnetizing
factors. Because we do not want to fix the shape of the sample, assumed to be infinite
in our model, we do not write down these demagnetizing factors, and consider onlyH0

0,
which we will call the external field, despite the fact that it differs fromHext.

H1
1 and M1

1 represent the slowly-varying complex amplitude of the monochromatic
plane wave under consideration. All other terms (except the conjugates of the latter) of
order 0 or 1 are set to zero, and we assume that the higher-order terms vanish asξ −→ −∞.
This is the usual multiscale expansion that ordinarily leads to the NLS equation [26].

Considering the damping term as a perturbation, we will assume (as in [10]) thatσ̃

satisfies

σ̃ = εpσ̂ (13)

wherep is some positive integer, and̂σ a quantity of order 1. Then we put expansions
(8)–(12) into the basic equations (6) and (7) and collect the terms order by order inε.

The result will depend on the order of magnitude of the damping coefficientσ̃ , that is,
of the integerp. At order ε0, we obtain, whatever the value ofp,

H0 = αm (14)

M0 = m (15)
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where

m =
(mx
mt
0

)
. (16)

m is a constant vector andα a real constant.
At order ε1, we obtain the dispersion relation

µ2m2
x + γµ(1 + α)m2

t = γ 2ω2 (17)

where

µ = 1 + αγ (18)

γ = 1 − k2

ω2
(19)

and

M1
1 = m1

1g(ξ, T , τ ) (20)

m1
1 =

( −iγµmt
iγµmx
−γ 2ω

)
(21)

H1
1 = h1

1g(ξ, T , τ ) (22)

h1
1 =

( iγµmt
−iµmx
γω

)
. (23)

At order ε2, the third harmonics and those following are zero; the second harmonics
are non-zero and uniquely determined. To avoid unhelpful length in this article, we shall
not record these values here which, as with other details of this calculus, are the same as
those in casẽσ = 0, so can be omitted without inconvenience for the clarity of this paper.
The reader interested in these details should see [4, 5]. In the case whereσ̃ is of orderε
(p = 1), the solvability condition for the fundamental term leads to the following equation:

∂g

∂T
+ V

∂g

∂ξ
+ g

T0
= 0. (24)

V is the group velocity of the wave,

V = (b + 1)u

b + 1 + γµu2
(25)

with

u = ω

k
(26)

and

b = µ2m2
x

γ 2ω2
. (27)

The constantT0 has the following expression:

T0 = m

−σ̂
2(1 − γ )(1 + α)(b + 1 + γµu2)

γω2[2µ− (1 + b)(1 − γ )]
. (28)

The solution of equation (24) is

g(ξ, T , τ ) = q(ξ − V T, τ)e−T/T0. (29)
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Thus the dominant time evolution ofg is an exponential decay. The calculus can be pursued
in order to find theτ -dependency ofq (or g). We solve the equations in an analogous
way to that in [4], with additional technical complications. We obtain an equation of the
form

iA
∂q

∂τ
+ B

∂2q

∂x2
+ E

∂q

∂x
+ Fq + Cq|q|2 e−2t/T0 + λqϕ e−2t/T0 + I

∂r

∂t
= 0 (30)

A, B, C, E, F , I , λ are constants. We have made the change of
variables 

x = ξ − V T

t = T

τ = τ.

(31)

r = r(x, t, τ ) and ϕ = ϕ(x, τ ) are additional degrees of freedom that
take place in the expressions for the quantitiesH1

2 and H0
2, respectively.

Let

K = iA
∂q

∂τ
+ B

∂2q

∂x2
+ E

∂q

∂x
+ Fq (32)

and

Q = (Cq|q|2 + λϕ)q. (33)

K andQ do not depend ont , thus

r(x, t, τ ) = −K
I
t + QT0

2I
e2t/T0 + r0(x, τ ) (34)

r0 being an arbitrary function ofx, τ only. H1
2, and thusr, must be bounded ast −→ +∞.

Thus we have necessarily

K = Q = 0. (35)

In particular, we find that

iA
∂q

∂τ
+ B

∂2q

∂x2
+ E

∂q

∂x
+ Fq = 0. (36)

A andB have the same expression as in the NLS equations of [4, 5], andE, F are real
constants, given by the formulae listed in appendix B.

The solutions of equation (36) have the form

q(x, τ ) = q0 exp

[
ilx + i

F − Bl2

A
τ − El

A
τ

]
(37)

whereq0 is an arbitrary complex number, andl real. We obtain corrections to the time
evolution of the wave, for the oscillatory part as well as for the exponential decay, but these
corrections are still linear.

It is clear, from this calculus, that the presence of an exponential decay in the transport
equation (24) kills any nonlinear effect, even at a higher order. The main interest of
equation (36) lies in this last remark, even if we are not quite sure of the physical relevance
of the correcting terms in (37).

In the case wherep > 1, the term(1/T0)g in equation (24) is of higher order, and

g(ξ, T , τ ) = g(ξ − V T, τ). (38)
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We find exactly the NLS frame again. The computation of terms of orderε2 for n = 0 is
described in [4, 5]. The equation describing theτ -evolution ofg is the solvability condition
for the fundamental harmonicn = 1 at orderε3. For p = 2, we obtain

m ∧ (H1
3 − αM1

3 )− iωM1
3 = V

∂

∂ξ
M1

2 − ∂

∂τ
M1

1

−
∑
r+s=1

(M r
1 ∧ H s

2 + M r
2 ∧ H s

1)+ iωσ̂

m
m ∧ M1

1 . (39)

M1
3 can be expressed as a function ofH1

3 as in casẽσ = 0, so hence we get

LH1
3 = V

1,0
3 + V

1,σ
3 (40)

where

L =
( iω 0 µmt

0 iγω −µmx
−(1 + α)mt µmx iγω

)
. (41)

V
1,0

3 is the right-hand side of the analogue equation obtained in caseσ̃ = 0, and

V
1,σ

3 = iωσ̂

m
m ∧ M1

1 . (42)

The solvability condition for equation (40) is obtained by applying the linear form( x
y

z

)
7−→ det

( iω 0 x

0 iγω y

−(1 + α)mt µmx z

)
(43)

to the right-hand side and setting the result equal to zero.
One obtains the following result

iA
∂g

∂τ
+ B

∂2g

∂ξ2
+ Cg|g|2 + iDg = 0. (44)

This is the nonlinear Schrödinger (NLS) equation

iA
∂g

∂τ
+ B

∂2g

∂ξ2
+ Cg|g|2 = 0

already obtained in [4, 5], perturbed by the added term iDg. The real constantsA, B, C
have the same (complicated) expression as found in [4, 5], and

D = σ̂

m
γ 2ω3[2µm2

x + (µ+ (1 + α)γ )m2
t ]. (45)

We verify that

D

A
= 1

T0
(46)

whereT0 has expression (28).
If p > 2, i.e. if σ̃ ∈ o(ε2), the term iDg in equation (44) disappears and the evolution

of the modulation is governed by the NLS equation

iA
∂g

∂τ
+ B

∂2g

∂ξ2
+ Cg|g|2 = 0. (47)
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3. Examples of values ofσ̃

The model we are dealing with has mainly been used for the description of the propagation
of microwaves in ferrites. Experimental data about such materials can be found in various
manuals [25, 27, 28]. Altough they are not up to date, we will restrict ourselves to the data
given by these books. Values ofσ̃ are computed from them using formulae (4) and (5).
They vary from just less than 10−4 to nearly 10−1.

The order of magnitude of̃σ depends on the material, but we have to compare it with
the small parameterε, which seems to be arbitrary. In the present frame,ε represents both
the ratio‖εH1

1‖/‖H0
0‖ of the amplitude of the wave field to the exterior field, and the ratio

ξ/(x − V t), the inverse of the ratio of the typical length of the amplitude variation to the
one of the phase variation (the wavelength). These two quantities are assumed to have the
same order of magnitude, depending on the experimental conditions.

If σ̃ is not very small, as an example for a polycrystalline ferriteσ̃ ' 10−1 (for
example, Ni0.8Zn0.2Fe2O4, sphere of diameter 0.75 mm, frequency 9400 MHz:σ̃ ' 0.08
([25], p 323)),ε cannot be larger than 10−1, thus σ̃ is of orderε, or larger. Exponential
decay and linear behaviour is thus observed, in every case where this theory is applicable.

Now consider a relatively small value of̃σ , for exampleσ̃ ' 10−2 (for example,
monocrystalline spinel ferrite, Mn0.98Fe1.86O4, sphere of diameter 0.25 mm, frequency
9300 MHz: σ̃ ' 0.0067, 0.0076, 0.010 on each of the three cristallographic axes ([25],
p 186)). If we chooseε ' 10−2, that is, if we choose a wave intensity of the order of
magnitude of a hundredth of the exterior field, and look for the variations of the amplitude
in wave packets of some hundreds of wavelengths,σ̃ has the same order of magnitude as
ε. Thus we will observe exponential decay and linear behaviour. For larger wave intensity
and shorter pulses, asε approaches 10−1 (the robustness of the NLS model allows us to
think that such a value ofε will not be too large, and that the perturbative calculus will still
be valid) we will haveσ̃ of orderε2, and thus the amplitude modulation will be described
by the perturbed NLS equation (44).

For very small values of̃σ , σ̃ ' 10−4 (for yttrium garnet ferrites, Lecrawet al found
the value1H ' 0.6 Oe [29], which leads tõσ ' 8 × 10−5. This was the lowest value
known at this time), the exponential decay and linear behaviour is observed for very small
values ofε, ε ' 10−4. For slightly larger values,ε ' 10−2, the modulation is described
by the perturbed NLS equation (44), and for high intensities and short pulses, withε just
less than 10−1, σ̃ becomes of orderε3, and is thus negligible, and the modulation obeys the
NLS equation (47).

Recent experimental works have measured microwave envelope solitons [6, 7] or dark
solitons [8] in yttrium iron garnet films. Although our theory does not, strictly speaking,
apply to thin films, because we assumed that the media were inifinite, these experimental
results are very close to our theoretical conclusions. The two regimes allowing solitons
or dark-solitons that correspond to the Benjamin–Feir instability studied in [5] have been
observed.

De Gasperiset al [6] measured a threshold power inputPth above which the attenuation
falls. They showed thatPth is proportional to the inverse squared pulse length 1/t2p . This
corresponds to the NLS model:tp has the same order of magnitude as the slow variablesξ

andT , that is 1/ε, while the powerP of the wave is proportional to the square of the field
described by the termH1

1 in our expansion, and is thus of orderε2. Therefore, regarding
the ε-dependency,P is proportional to 1/t2p when the formation of a soliton first occurs.
A remarkable feature is that the absorption of the soliton is practically negligible, which is
not the case for the solutions of the perturbed NLS equation (44) [30]. This is explained
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by our theory: the perturbed NLS equation (44) describes the behaviour of the wave only
when the nonlinearity and dispersion exactly balances the damping. If damping dominates,
which happens for a power input below some threshold (and the suited pulse length), the
exponential decay kills the nonlinear effects. On the other hand, if the power input is large
enough (and the pulse length accordingly small), so that nonlineary and dispersion dominate
the damping, the modulation of the wave is governed by an unperturbed NLS equation. This
justifies the power output increase observed by De Gasperiset al.

4. The relaxation time

The relaxation timeT0 defined by (28) is also given by the following expression:

T0 = m

−σ̂
2[(µ2m2

x/u
2)+ (1 + αγ 2)γ 2ω2]

γ 2ω2[γ 2ω2 + µ2(m2
x +m2

t )]
. (48)

Becauseσ̂ is a negative constant, we see that, as was expected, this quantity is always
positive. For high frequencies,T0 has the following limit:

T0 ∼
ω−→∞

4

−σ̂m
1

(1 + cos2 θ)
. (49)

We have put {
mx = m cosθ

mt = m sinθ.
(50)

θ is thus the angle between the propagation direction and the exterior field. For high
frequencies,T0 varies between 2/|σ̂ |m and 4/|σ̂ |m, depending onθ : its order of magnitude
does not change much.

The corresponding decay length is given by

X0 = V T0 = m

−σ̂
2(1 + α)(b + 1)

γω2u[2µ− (1 − γ )(b + 1)]
(51)

or

X0 = m

−σ̂
2(1 + α)

γω2u

µ2m2
x + γ 2ω2

2µm2 − (1 − γ )m2
t

. (52)

5. The perturbed NLS equation

Equation (44) describes the evolution of the envelope of a short pulse in a dispersive, weakly
nonlinear medium, with weak damping. As we wrote in the introduction, it has already
been derived in the same physical context [7, 12], but not in such a rigorous way as we
have done here. It has also been obtained in other situations, as in nonlinear optics [13]
or hydrodynamics [14]. We shall in this section summarize the known properties of this
equation, and give a new exact solution for it.

Whatever the real non-zero values of the constantsA, B, C, D, equation (44) is not
integrable. ForD = 0 it reduces to the integrable nonlinear Schrödinger (NLS) equation.
It looks like the complex Ginzburg–Landau (CGL) [15–18] equation, which has the same
form, but with B, C complex. Setting to zero the imaginary part of these parameters
modifies totally the properties of the equation. Some particular case of the CGL equation,
namely the case where the ratioB/C is real, is called the real Ginzburg–Landau equation.
It has many properties in common with the so-called complex case. It is very important for
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our purpose not to mix up equation (44) with the real Ginzburg–Landau equation. Indeed,
equation (44) is not a particular case of the CGL equation. It appears clearly when one
considers the expressions of the exact solutions of CGL given in [15–17]. Divisions by the
imaginary part ofB andC occur in many places in these formulae. With the notation of
these papers,B = p = pr + ipi , andC = q = qr + iqi , and the expressions are not defined
aspi or qi are zero.

If, despite this observation, we try to retrieve in equation (44) the particular solutions
of the CGL equations given by Nozaki and Bekki [15], we find a bilinear form, analogous
to that of NLS [31]:

[−λ+ iADτ + BD2
ξ ]G · F = 0[

B

C
D2
ξ + iD − λ

C

]
F · F = |G|2. (53)

Dn
X is the operator defined by Hirota as [31]

Dn
Xf · g =

(
∂

∂X
− ∂

∂ ′
X

)n
f (X)g(X′)|X=X′ . (54)

The functionsF andG are such thatF is real andg = G/F , andλ is an arbitrary complex
constant. But any attempt to find an explicit solution for equation (44) generalizing one of
the solutions of Nozaki and Bekki gives the constraintD = 0 as a solvability condition.

Karpman and Maslov [30] developed a perturbative method to find approximate
solutions of this equation, whenD is small. This method is based on the inverse scattering
transform (IST) method for the resolution of the NLS equation. Thus it works only when
this equation admits solitons, i.e. whenBC > 0 (the sign of theBC product, in our special
case, as a function of the physical parameters of the system, has been discussed in great
detail in [5]). The quoted authors work with the rescaled equation:

iuτ ′ + 1
2uξ ′ξ ′ + u|u|2 = iρu (55)

(the subscript denotes partial differentiation). Equation (55) can be obtained from (44)
through the transformation

ξ ′ = aξ

τ ′ = ητ η = ±1

u = bg

(56)

with 

η = sgnAB

a =
√∣∣∣∣ A2B

∣∣∣∣
b =

√∣∣∣∣CA
∣∣∣∣

ρ = −η
T0
.

(57)

To first order in the perturbation theory, the solution is

u = 2ν
1

coshz

[
1 + ρ(4z2 + π2/3)

16iν2

]
ei(δ+µ0z/ν) (58)
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with

z = 2ν(ξ ′ − 2µ0τ
′ − ξ0) (59)

ν = ν0 e2ρτ ′
(60)

δ = ν2
0

2ρ
[e4ρτ ′ − 1] + 2µ2

0τ
′ + 2µ0ξ0 + δ0. (61)

µ0, ν0, δ0, ξ0 are arbitrary constants.
Neglecting the term proportional toρ in the parenthesis in expression (58), we have

the so-called adiabatic approximation: a solitonic-shaped solitary wave, where amplitude
ν = ν0 e2ρτ ′

is exponentially decreasing with timeτ (ρ < 0 if η = +1, andρ > 0 if
η = −1), while its width 1/ν is exponentially increasing (with timeτ ).

The correction termρ(4z2 + π2/3)/16iν2 is proportional to

ρπ2

48iν2
0

e−4ρτ ′

when t is large (τ > 0), and thus increases very rapidly. The perturbation calculus is
therefore valid only for smallτ ′,

|τ ′| < 1

|ρ| . (62)

This restriction is not surprising: once we return to the laboratory frame, the rescaled
value ofρ and is proportional tõσ , thus is of orderε2. Therefore, condition (62) means
that solution (58) is valid only for timest of order ε−2, but the scaling (10) defines
τ(= ±τ ′) = ε2t , which means precisely that we restrict ourselves to values of the timet

of orderε−2. This upper limit fort has in fact a sufficiently large value.
Numerical studies of the solution have also been performed, in relation to the

applications to nonlinear optics. [32] presents such a calculation, and compares its results to
those of the previous perturbative calculus. The authors retrieve the validity condition (62)
of the perturbative calculus. For larger values of timet (replaced by the spatial parameter
z in their study), the behaviour of the numerical solution is found to be identical to that of
the linear solution. An analogous feature can be found in the frame of our present work by
the following method. Let us callt = 1/ε2 the time scale. Then, considering values of the
time variablet greater than 1/ρ is equivalent to assuming that the damping constantρ has
an order of magnitude greater thanε2. We have seen that, in this latter case, the behaviour
of the wave was linear. Authors of [32] have made the same observation, although their
reasoning concerns equation (44), and not on the basic set.

In addition to these already known properties of equation (44), we will describe a
method that gives an exact particular solution of the equation, and a way to compute
various approximate solutions. Let

p = B

A
q = C

A
r = D

A
. (63)

Equation (44) reads

igτ + pgξξ + qg|g|2 + irg = 0. (64)

We put

g(ξ, τ ) = h(ξ, τ )e−rτ . (65)

Then the equation verified by functionh is

ihτ + phξξ = −qh|h|2 e−2rτ . (66)
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Whenτ is large in regard toT0 = 1/r, the right-hand side of equation (66) can be treated
as a perturbation. Although we just write thatτ normally has the same order of magnitude
asT0, the exponential e−2rτ decreases very rapidly, and will be negligible for values ofτ

not too far fromT0. Let us expandh in a power series of the quantity e−2rτ :

h =
+∞∑
n=0

h(n)e−2nrτ . (67)

Each functionh(n) should verify

i(h(n)τ − 2nrh(n))+ ph
(n)
ξξ = 8(n) (68)

8(n) = −q
∑

n1+n2+n3+1=n
n1, n2, n3>0

h(n1)h(n2)h(n3)∗. (69)

For eachn, 8(n) is defined by the knowledge ofh(r), 0 6 r 6 n − 1, and thus
equations (68) and (69) constitute a recurrence relation for the coefficientsh(n) of series
(67).

For n = 0, we get

ih(0)τ + ph
(0)
ξξ = 0. (70)

Let us first choose the particular solution

h(0) = A ei(Kξ−pK2τ) (71)

whereA ∈ C, K ∈ R are arbitrary constants. Starting with this solution forh(0), we will
construct an explicit exact solution of equation (66), using the following method.

First, we show by induction that a solution of the system formed by equations (68) and
(69) for eachn is such that, for eachn > 1,

h(n) = λnh
(0) (72)

whereλn is a constant.
Then, we show, always by induction, thatλn = unλ

n
1, with λ1 = (−iq/2r)|A|2, andun

is a sequence of real constants defined by
u0 = 1

un = 1

n

∑
n1+n2+n3+1=n

(−1)nun1un2un3.
(73)

Expanding eX = eX · eX · e−X, we show thatun = 1/n! for eachn. It is then easy to sum
up the series. Finally we have

g = A exp

[
i(Kξ − pK2τ)− rτ − iq

2r
|A|2 e−2rτ

]
. (74)

Starting with

h(0) = A1 eiψ1 + A2 eiψ2 (75)

A1,A2 ∈ C ψj = Kjξ − pK2
j τ j = 1, 2

we obtain a ‘two-modes’ solution, that cannot be exactly computed, but for which we can
give asymptotic expansion for large values ofτ . We report expression (75) ofh(0) in the
equation forh(1):

i(h(1)τ − 2rh(1))+ ph
(1)
ξξ = −qh(0)|h(0)|2. (76)
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We expand the right-hand side and seek for an analogous expression forh(1).
After a short computation, we get the following approximate solution of (44),

g = e−rτ [A1 eiψ1 + A2 eiψ2 + e−2rτ (λ
(1)
1 eiψ1 + λ

(2)
1 eiψ2 + λ

(21)
1 e2iψ2−iψ1

+λ(12)
1 e2iψ1−iψ2)+ O(e−rt )] (77)

with:

λ
(1)
1 = q

2ir
A1[|A1|2 + 2|A2|2] (78)

λ
(2)
1 = q

2ir
A2[|A2|2 + 2|A1|2] (79)

λ
(21)
1 = qA∗

1A2
2

2(ir + p(K1 −K2)2)
(80)

λ
(12)
1 = qA∗

2A2
1

2(ir + p(K1 −K2)2)
. (81)

6. Conclusion

We have discussed the effect of the damping on the nonlinear modulation of a
monochromatic wave in a ferromagnet. Its behaviour depends on the magnitude of the
damping constant. If this constant is small enough, in relation to the intensity of the
wave, the evolution of the modulation is governed by the NLS equation, and the formation
of solitons cancels the effects of the damping. If the damping constant is larger, the wave
decreases exponentially, and no nonlinear modulation is observed. The multiscale expansion
has been pursued to the following order: the evolution equation is still linear.

It is also possible that damping exactly balances the nonlinearity and dispersion; in this
case the evolution of the modulation is described by a perturbed NLS equation. We have
summarized the known properties of this equation and given a new exact solution for it,
and a method to compute approximate particular solutions.

Some questions about the physical relevance of the present model have been pointed
out; in particular, we have shown that the inhomogeneous exchange interaction does not
modify the nonlinear behaviour of the wave. We have also commented on our conclusions
in relation to standard numerical data, and re-interpreted the experiment of De Gasperiset
al.

Appendix A

In this appendix, we show that, in the frame where we derived the perturbed NLS equation
(44), a small inhomogeneous exchange interaction term has no effect on the modulation
of the monochromatic wave, but introduces only a linear phase modulation. The precise
expressions for the coefficients of this modulation are very complicated and not essential,
and thus in order to avoid numerous pages of formulae we shall omit them, as well as many
technical details of the calculus.

The inhomogeneous exchange interaction can be described [12], in the frame of the
present model, by replacing equation (3) by

∂M

∂t
= −δµ0M ∧ Heff + σ

‖M‖M ∧ (M ∧ H) (82)

where the fieldH is replaced by the effective field:

Heff = H + ρ1M . (83)
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ρ is some real constant. As previously given, we rescale the equations, and then use the
expansion defined by equations (8)–(12). We assume thatσ̃ andρ are small, in the following
sense,

σ̃ = ε2σ̂ and ρ = ερ̂ (84)

whereρ̂, σ̂ are quantities of order zero. Physically, it would mean that the coefficientσ is
very small in relation toρ, which is not the case in general, but we intend here to prove, in
a mathematical way, that the influence of the inhomogeneous exchange interaction on the
nonlinear behaviour is negligible, even when the coefficientρ is not so small. That is why
we assume such an order of magnitude forρ.

The terms at orderε0 are the same as previously given by equations (14)–(16). At
orderε1, we also find the solution given by equations (17)–(23). Because we have assumed
that ρ is small, of orderε, the inhomogeneous exchange interaction does not modify the
dispersion relation (this means that we are not considering spin waves). At orderε2, we
obtain an equation analogous, in some sense, to equation (24):

∂g

∂T
+ V

∂g

∂ξ
− i�g = 0. (85)

The real coefficient� reads

� = ρ̂k2 γω[2µ− (1 + b)(1 − γ )]

2(1 − γ )(1 + α)(b + 1 + γµu2)
. (86)

Thus

g(ξ, T , τ ) = h(ξ − V T, τ)ei�T . (87)

Because of the factor i in equation (85), the exponential phase factor will not kill the
nonlinear effects as did the exponential decaying factor in equation (29). For this reason,
we will obtain a nonlinear evolution equation withρ as large as orderε, while such a result
necessitatesσ as small as orderε2.

The next step of the calculus reads as in the case where we neglected the inhomogeneous
exchange term. The expressions obtained forH0

2, M0
2 are the same as in [4, 5]. The terms

H1
2 andM1

2 contain a term proportional tôρ, which we will not write here. At orderε3,
we have to write a solvability condition. A term proportional toρ̂ appears in equation (82);
this is the coefficient ofε3eiϕ in the expansion of

ρM ∧ (1M ). (88)

After use of equation (87), we obtain the equation

iAhτ + Ph+ iRhξ + Bhξξ + iDh+ Ch|h|2 = 0. (89)

The important fact is that the coefficientsA, B, C, D have the same value as in the case
whereρ = 0. The coefficientsP andR have complicated expressions, which we shall omit,
with P proportional toρ̂2 andR porportional toρ̂. Let

h(ξ − V T, τ) = j (ξ − V T, τ)ei(a(ξ−V T )+bτ) (90)

with

a = −R
2B

(91)

and

b = 1

A
[−a2B − aR + P ]. (92)
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Then equation (89) reduces to

iAjτ + Bjξξ + Cj |j |2 + iDj = 0 (93)

which is identical to equation (44). Thus the only effect of the inhomogeneous exchange
term is the linear phase factor

exp i(�T + a(ξ − V T )+ bτ)

which gives account of the modification of the linear dispersion relation by the
inhomogeneous exchange interaction. However, the nonlinear behaviour of the modulation
is not affected.

Appendix B

In this appendix we give the lengthy formulae that permit us to compute the coefficientsE

andF in equation (36). First, we compute the second-order terms:

H1
2 = h1

1 + h
1,ξ
2 gξ + h1,σ

2 g (94)

M1
2 = m1

1 + m
1,ξ
2 gξ + m1,σ

2 g. (95)

The functionr that intervenes in equation (30) is such that

f (ξ, T , τ ) = r(ξ − V T, T , τ )e−T/T0. (96)

m
1,ξ
2 , h

1,ξ
2 , m1,σ

2 , h1,σ
2 are constant vectors given by

m
1,ξ
2 = 1

u2
(V − u)

( −mt(b + 1 + 2αγ )
mx(b + 1 + 2αγ )

2iγω

)
(97)

h1,ξ
2 = 1

u2
(V − u)

(mt(b + 1 + 2αγ )
(mx/γ )(1 − b)

0

)
(98)

m1,σ
2 =

( (−mt/ω)[(γ /T0)[2α(1 − γ )− µ] − (γ 2ω2σ̃ /m)]
(mx/ω)[(γ /T0)[2α(1 − γ )− µ] − (γ 2ω2σ̃ /m)]

2iγ (1 − γ )/T0

)
(99)

h1,σ
2 =

( (mt/ω)[(γ /T0)[2α(1 − γ )− µ] − (γ 2ω2σ̃ /m)]
(mx/γω)[(1/T0)[2(1 − γ )+ γµ] + (γ 2ω2σ̃ /m)]

0

)
. (100)

Then we write the solubility condition for the system (6) and (7) at orderε3 for the
fundamental frequency. Thus leads to equation (30), after we have replacedg using
equation (29). The coefficients read

E = DV 1,(1)
3 + D1U

1,(1)
3 (101)

F = DV 1,(0)
3 + D1U

1,(0)
3 . (102)

The linear formsD andD1 are given by

D = (γ (1 + α)mt ,−µmx, iγω) (103)

D1 = ω

µ
(iγµmt,−iµmx,−γω). (104)
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U1,(0)
3 , U1,(1)

3 , V 1,(0)
3 , V 1,(1)

3 are vector coefficients of the linear system whose compatibility
condition is equation (30). They read

U
1,(0),x
3 = 2i

ωT0
(h

1,σ,x
2 +m

1,σ,x
2 ) (105)

U
1,(0),s
3 = 2i

ωT0
(h

1,σ,s
2 +m

1,σ,s
2 )+ 1 − γ

ω2T0
h

1,s
1 for s = y, z (106)

U
1,(1),x
3 = 2i

ω

(
1

T0
(h

1,ξ,x
2 +m

1,ξ,x
2 )+ V (h

1,σ,x
2 +m

1,σ,x
2 )

)
(107)

U
1,(1),s
3 = 2i

ω

(
1

T0
(h

1,ξ,s
2 +m

1,ξ,s
2 )+ V (h

1,σ,s
2 +m

1,σ,s
2 )

)
+2V (1 − γ )

ω2T0
h

1,s
1 + 2ik

ω
h

1,σ,s
2 for s = y, z (108)

V 1,(0)
3 = 1

T0
m1,σ

2 + σ

m
m ∧ [m ∧ (h1,σ

2 − αm1,σ
2 )] (109)

V 1,(1)
3 = 1

T0
m

1,ξ
2 + Vm1,σ

2 + σ

m
m ∧ [m ∧ (h1,ξ

2 − αm
1,ξ
2 )]. (110)

These quantities can be computed explicitly using equations (97)–(100); then the result can
be found from equations (101) and (102). This gives the coefficientsE andF .
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